
Jonathan Brossard
CTO - P1 Code Security

jonathan@p1sec.com
endrazine@gmail.com

Zero crypto
attacks against preboot
authentication passwords

Telecomix Cyphernetics Assembly,
Goteborg, 17 of June 2010

Before we start...

• Thanks to the organizers :)

• Thank you for coming.

• I'm very happy to be here !

 Conclusion & bonus !

 Experimental results

 Brute forcer design

 Keyboard internals

 Introduction

Agenda

Goals, contributions :

• Demonstrate the feasability of brute
force attacks on preboot
authentication passwords.

• Give a pessimist estimation of the
cost of password cracking on full
encryption software using a generic
instrumentation methodology.

• Use this metric to adapt password
length policy acording with the
value of the protected assets.

Juridical environment

• Cryptographic software is mostly legalized in both
North and South America and Europe.

• Wikipedia : « In China, a license is still required to
use cryptography. Many countries have tight
restrictions on the use of cryptography. Among the
more restrictive are laws in Belarus, Kazakhstan,
Mongolia, Pakistan, Russia, Singapore, Tunisia, and
Vietnam. »

• Users of cryptographic software must give either a
copy of their keys or plain text equivalent of any text
asked by authorities in case of trial, or face prison
sentences in most countries.

Crypto software
 poor reviews

+ Governments interrests
 + global business
communications

 + terrorism blah blah

= high risk of (cryptographic ?)
backdoors

& privacy threats

Is such a thing credible?

• Quoting Wikipedia :

« DES was designed to be resistant to diferential
cryptanalysis, a powerful and general cryptanalytic
technique known to NSA and IBM, that became
publicly known only when it was rediscovered in the
late 1980s. According to Steven Levy, IBM
rediscovered diferential cryptanalysis, but kept the
technique secret at NSA's request. The technique
became publicly known only when Biham and
Shamir re-rediscovered and announced it some
years later. The entire afair illustrates the difculty
of determining what resources and knowledge an
attacker might actually have. »

Technical motivations

• Even serious developpers don't test
their crypto software enough, if at all
(Debian SSL bug : ~32k keys).

• Vendors (in particular Truecypt) have
adopted policies where they do not
cover certain attacks (eg: Plain text
password leakage as we presented at
Defcon 0x16, or Joanna Rutowska's
evilmaid attack) leaving the «ofcial»
attack surface left to : computer theft.
Or simply put :
- brute force,
- brute force,
- oh, and of course, brute force !

More globally

• Non tech people will say :
« if it fails just go for
bruteforce ».

• Sure.. but how do you do it ?
I couldn't fnd a public tool
myself. And then I started to
wonder...

Keyboard internals

II-1) Boot sequence overview

II-2) BIOS API for user
inputs (1/2)

 Interruption 0x16 invoked via functions :
 ah=0x00 , “Get keystroke” : returns the

keystroke scancode in AH and its ASCII
code in AL.

 ah=0x01 , “Check for keystroke” : idem,
but the Zero Flag is set if no keystroke is
available in the Bios keyboard bufer.

II-2) BIOS API for user inputs
(2/2)

 eg : lilo password reading
routine :

II-3) BIOS internals for keyboard
management

II-4) BIOS keyboard bufer
Remanance... (1/3)

• Filling the BIOS keyboard bufer
(with the keyboard) :

II-4) BIOS keyboard
bufer Remanence...

• Reading the BIOS keyboard
bufer (using int 0x16, ah=0x00
or 0x01) :

Demo
Simulating keystrokes by

PIC programming
(from real mode)

Demo
Simulating keystrokes by

PIC programming
(from protected mode
under x86 GNU/Linux)

(aka: brute force any GUI)

Exemple of application :

Rebooting a computer
protected with a password
(assuming you know that
password - for now ;), by
simulating keystrokes at
boot time...

Attack scenario :

 I/O
Port
0x60

 I/O Port
0x64

Notes :

- You can get the code for this attack from
the Defcon archive (the attack is called
« Invisible Man »).

- For our cracking purpose, writing directly
to 0x41e is way more efcient (but that
was cool, right ? ;)

Demo
Retreiving passwords from

physical memory from
userland without privileges

(up to Vista SP0)

Notes

• Bitlocker's fx in Vista SP1 (replacing any
character by ' ') still leaks the password
length.

• This plain text password leakage vulneability
is still present on many software including
Lilo and Grub if you can read from arbitrary
physical memory locations (typically needs
root privileges).

Brute forcer design

Challenges

• Installation & initial control fow
modifcation (BIOS Firmware, other
media, MBR replacing/patching)

• Maintaining control (BP, IVT hijack,
runtime patching)

Design decisions

• We want something as generic as possible, so
we will avoid application specifc breakpoints
etc.

• The media we boot from is irrelevant
(usb/cdrom/foopy..)

• Keeping control over the control fow is a bit
tricky.

• Very similar to MBR virus writting (old
school !! ;)

Interrupts hijacking

• Int 0x13 : we need to proxy calls to the
original int 0x13, changing disk number
(dl). It also allows to detect successfull
decryption

• Int 0x16 : simulate keystrokes
• Int 0x10 : for performance (we don't

need display)

Full attack scenario

• Boot from our code (1 sector)
• Allocate BIOS memory
• Copy the rest of our code there
• Patch the IVT (int 0x16, int 0x10, 0x13)
• Emulate int 0x19 (copy code from

original MBR to 0x00:0x7c00, jump
there)

jonathan@blackbox:~/h2hc$
cat BF-OS.asm |grep -v "^;"|
grep [a-Z0-9]|wc -l
902
jonathan@blackbox:~/h2hc$

Demo
Bruteforcing Lilo

Demo
Bruteforcing Grub

with MD5 hash

Demo
Bruteforcing

full disk encryption
 with TrueCrypt 6.3

Experimental results

It's doable :)

Result #1

Result #2

The cost of hashing algorithms
(MD5..) is negligible in the

cracking process

Result #3 : performance

Hashing algorithms : we tried 705
passwords in 30s.

Truecrypt : 10s / password
(whow !)

Metrics
(assuming a hashing

algo is used)

Time taken to crack

 Irrelevant
(cloud computing !)

Search space

 S = sigma (i=1,length) sizeof(charset)^i

Cost

C = O (S * 3/70 * cpu_freq/(1.6GHz) *
cost_per_hour)

Amazon EC2

Cost

C ~ 3/70 * 0.085 * sigma (i=1,length)
(sizeof(charset)^length)

Cost

Exemple :
charset = [a-z]
Pass length = 5

Cost ~ $45 000

Cost

Exemple :
charset = [a-z]
Pass length = 8

Cost ~ $800 000 000

Cost

Exemple :
charset = [a-zA-Z0-9]

Pass length = 8

Cost ~ $800 000 000 000

Conclusions (1/2)
- Bruteforcing is physically doable for
both hashing algorithms and complex
symetric systems.
- Bruteforcing remains unpractical
against Truecrypt so far (6 passwords /
minute, recommended pass phrases of
length 20).
- This methodology, while generic, is
too costly to be practical against strong
passwords (unless you're .gov ?).

Conclusions (2/2)

- Not using TPM like technologies allows
attackers to take advantage of
distributed computing, making the
brute force time irrelevant.

A few more things on
TrueCrypt 6.3

Truecrypt's policy and
assumed attack surface

• No TPM support. Won't happen.
• No support against root or physical

attacks (bootkits, trojaning ...)
• Regarding full disk encryption (the

real thing why TC is great) : no
keyfles support as of version 6.3.

No TPM means

• No hardware sealing.
• We can modify the

bootloader.
• We can scale on

hardware/virtualisation.

Key/pass repudiation

• Setting a new key/passphrase
pair is not enough : one needs
to fully decrypt the drive, and
then fully re encrypt it.

• Old key/pass pair would still be
valid otherwise.

Forensics : HD dump vs.
Rescue iso image

• They contain exactly the same crypto
information (salt+keys : only password is
missing).

• We can very well brute force from a Rescue
cdrom image (easier to clone/steal than a
whole HD).

• This is not intuitive : social engineering risk
increased.

Demo
Reversing the

Truecrypt Rescue disk

Thank you for coming :)

Questions ?

